ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Ronald J. Lipinski
Nuclear Technology | Volume 65 | Number 1 | April 1984 | Pages 53-66
Technical Paper | Postaccident Debris Cooling / Heat Transfer and Fluid Flow | doi.org/10.13182/NT84-A33373
Articles are hosted by Taylor and Francis Online.
A one-dimensional model is developed for boiling heat removal and dryout in particulate debris. The model can be used for predicting the coolability of postaccident debris from a nuclear reactor (either light water or liquid-metal fast breeder). The model includes the effects of both laminar and turbulent flow, two-phase friction, gravity, capillary force, and channels at the top of the debris. The model is applicable to debris on permeable supports with liquid entering the debris bottom or to debris on impermeable plates. In the latter case, the plate can be either adiabatic or cooled on the bottom. The model predicts channel length, the liquid fraction within the debris as a function of elevation, the incipient dryout power, the dry zone thickness as a function of power, and the existence of downward heat removal by boiling (in bottom-cooled debris), all for both uniform and stratified debris.