ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Hartwig Laue, Klaus Hermann Kerz
Nuclear Technology | Volume 65 | Number 1 | April 1984 | Pages 46-52
Technical Paper | Postaccident Debris Cooling / Heat Transfer and Fluid Flow | doi.org/10.13182/NT84-A33372
Articles are hosted by Taylor and Francis Online.
Within the framework of the licensing procedure for the SNR-300 nuclear power plant in Kalkar, Federal Republic of Germany, it is verified that the reactor vessel and its internal component parts withstand the loadings resulting from a hypothetical core disruptive accident (HCDA). The resultant high temperatures at the areas in contact with molten nuclear fuel are sufficiently reduced by the decay heat removal chain so that these component parts can withstand the mechanical forces resulting from the dead weight of the fuel and the adjacent component parts. The finite element method is used for determination of strain resulting from mechanical loadings and thermal expansion for the strength test and for evaluation of the component parts concerned according to the applicable rules for this type of accident, taking into consideration criteria and stress limit values.