ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Adimir dos Santos, Jamil Alves do Nascimento
Nuclear Technology | Volume 140 | Number 3 | December 2002 | Pages 233-254
Technical Paper | Fission Reactors | doi.org/10.13182/NT02-A3336
Articles are hosted by Taylor and Francis Online.
An Integral Lead Reactor (ILR) concept is proposed to be used in developing countries. The ILR is an association of the best characteristics of the American Integral Fast Reactor and of the Russian Lead-Cooled Reactor. The reactor is started with U-Zr and shifts cycle-by-cycle to the U-TRU-Zr fuel. Besides electricity generation an association of the ILR and a chemical heat pump for high-temperature industrial processes is idealized.Homogeneous reactor cores based on the American and Russian experiences on fast reactor technology have been designed for conception evaluation. The main core parameters are evaluated in the first and in the equilibrium cycles as a function of the pin diameter in the 6.35- to 10.4-mm range, pin pitch-to-diameter (p/d) ratio in the 1.308 to 1.495 range, and reactor power in the 300- to 1500-MW(electric) range. To mitigate the transient-overpower accident, a requisite is to have a burnup reactivity (kBu) < eff in the equilibrium cycle. The use of enriched uranium results in a poor core conversion ratio, and this fuel must be replaced as quickly as possible by the generated plutonium. In the equilibrium cycle the burnup reactivity goal is achieved for core power of 300 MW(electric) using a pin diameter of 10.4 mm and p/d of 1.308. The lead void reactivity is negative for reactor power lower than 750 MW(electric). The Doppler effect is small, as expected in a fast reactor loaded with metallic fuel. The fast fluence limit of 4.0 × 1023 n/cm2 is a restrictive parameter of the ILR, and to obtain the burnup of 100 GWd/t HM, a core optimization is needed. All the base accident evaluation and the optimization of the ILR are still to be performed.