ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Thomas D. Radcliff, Shu-Pei Liu, Don W. Miller
Nuclear Technology | Volume 140 | Number 2 | November 2002 | Pages 209-221
Technical Paper | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies | doi.org/10.13182/NT02-A3334
Articles are hosted by Taylor and Francis Online.
A controlled-calorimetric in-core instrument that can directly measure nuclear energy deposition has been developed and tested. This instrument works by heating an element of reactor fuel to a constant temperature with an electric heater, such that input electrical power is inversely related to the deposited nuclear power. Tests on first-generation sensor prototypes and subsequent modeling showed three problems: lack of proportionality in the relative neutron and photon response, a relatively low bandwidth, and drift. A model of the sensor has been developed and used to optimize the design of second-generation prototypes with respect to these three problems. Study of the predicted relative neutron and gamma response showed that a nonuniform distribution of nuclear and electrical energy deposition caused the temperature distribution within the sensor to change as the ratio of the energy components varies. This affects sensor power proportionality and increases response time. Heat transfer through the sensor power leads was demonstrated to cause most of the observed drift. The proposed second-generation sensor design forces almost all of the temperature gradient into a thin metal axial region, which gives uniform energy distribution from all sources and better control of thermal leakage and contact resistances. This results in a prediction of increased bandwidth with improved proportionality.