ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Thomas D. Radcliff, Shu-Pei Liu, Don W. Miller
Nuclear Technology | Volume 140 | Number 2 | November 2002 | Pages 209-221
Technical Paper | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies | doi.org/10.13182/NT02-A3334
Articles are hosted by Taylor and Francis Online.
A controlled-calorimetric in-core instrument that can directly measure nuclear energy deposition has been developed and tested. This instrument works by heating an element of reactor fuel to a constant temperature with an electric heater, such that input electrical power is inversely related to the deposited nuclear power. Tests on first-generation sensor prototypes and subsequent modeling showed three problems: lack of proportionality in the relative neutron and photon response, a relatively low bandwidth, and drift. A model of the sensor has been developed and used to optimize the design of second-generation prototypes with respect to these three problems. Study of the predicted relative neutron and gamma response showed that a nonuniform distribution of nuclear and electrical energy deposition caused the temperature distribution within the sensor to change as the ratio of the energy components varies. This affects sensor power proportionality and increases response time. Heat transfer through the sensor power leads was demonstrated to cause most of the observed drift. The proposed second-generation sensor design forces almost all of the temperature gradient into a thin metal axial region, which gives uniform energy distribution from all sources and better control of thermal leakage and contact resistances. This results in a prediction of increased bandwidth with improved proportionality.