ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
Joonhong Ahn, Atsuyuki Suzuki, Ryohei Kiyose
Nuclear Technology | Volume 64 | Number 2 | February 1984 | Pages 154-165
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT84-A33338
Articles are hosted by Taylor and Francis Online.
A computational analysis of nuclide migration through fissured geological formations was performed. The migration behavior can be described by convective transport in the fissures, diffusive transport with radioactive decay chain in the bulk rock, and sorption on the fissure wall. The mathematical model employed is based on the finite element method (FEM) solution of transport equations, taking into account the interfissure two-dimensional diffusion. The decay chain, 234U → 230Th → 226Ra, was examined to illustrate the migration behavior. The FEM solution was in good agreement with the analytical solution using simpler assumptions. Numerically investigated were the effects of (a) the decay chain in pores, (b) two-dimensional diffusion in pores, (c) the axial dispersion in fissures, (d) the interaction between fissures, and (e) the fissure wall sorption. As a result, it can be said that the effect of the decay chain in pores is especially important in order not to have overestimates in terms of safety and that the fissure wall sorption is an important factor for realistic estimates because it has a remarkable effect on the extent of nuclide confinement within the geological media.