ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Joonhong Ahn, Atsuyuki Suzuki, Ryohei Kiyose
Nuclear Technology | Volume 64 | Number 2 | February 1984 | Pages 154-165
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT84-A33338
Articles are hosted by Taylor and Francis Online.
A computational analysis of nuclide migration through fissured geological formations was performed. The migration behavior can be described by convective transport in the fissures, diffusive transport with radioactive decay chain in the bulk rock, and sorption on the fissure wall. The mathematical model employed is based on the finite element method (FEM) solution of transport equations, taking into account the interfissure two-dimensional diffusion. The decay chain, 234U → 230Th → 226Ra, was examined to illustrate the migration behavior. The FEM solution was in good agreement with the analytical solution using simpler assumptions. Numerically investigated were the effects of (a) the decay chain in pores, (b) two-dimensional diffusion in pores, (c) the axial dispersion in fissures, (d) the interaction between fissures, and (e) the fissure wall sorption. As a result, it can be said that the effect of the decay chain in pores is especially important in order not to have overestimates in terms of safety and that the fissure wall sorption is an important factor for realistic estimates because it has a remarkable effect on the extent of nuclide confinement within the geological media.