ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Guillermo A. Urrutia, Alberto J. G. Maroto, Roberto Fernández-Prini, Miguel A. Blesa
Nuclear Technology | Volume 64 | Number 2 | February 1984 | Pages 107-114
Technical Paper | Fission Reactor | doi.org/10.13182/NT84-A33334
Articles are hosted by Taylor and Francis Online.
A simplified model is presented that permits one to calculate the average activity on the fuel elements of a reactor that operates under continuous refueling, based on the assumption of crud interchange between fuel element surface and coolant in the form of particulate material only and using the crud specific activity as an empirical parameter determined in plant. The net activity flux from core to out-of-core components is then calculated in the form of parametric curves depending on crud specific activity and rate of particulate release from fuel surface. In pressure vessel reactors, contribution to out-of-core radionuclide inventory arising in the release of activated materials from core components must be taken into account. The contribution from in situ activation of core components is calculated from the rates of release and the specific activities corresponding to the exposed surface of the component (calculated in a straightforward way on the basis of core geometry and neutron fluxes). The rates of release can be taken from the literature, or in the case of cobalt-rich alloys, can be calculated from experimentally determined cobalt contents of structural components and crud. For pressure vessel reactors operating under continuous refueling, activation of deposited crud and release of activated materials are compared; the latter, in certain cases, may represent a sizable (and even the largest) fraction of the total cobalt activity. It is proposed that the ratio of activities of 59Fe to 54Mn may be used as a diagnostic tool for in situ activation of structural materials; available data indicate ratios close to unity for pressure tube heavy water reactors (no in situ activation) and ratios around 4 to 10 for pressure vessel, heavy water reactors.