ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Guillermo A. Urrutia, Alberto J. G. Maroto, Roberto Fernández-Prini, Miguel A. Blesa
Nuclear Technology | Volume 64 | Number 2 | February 1984 | Pages 107-114
Technical Paper | Fission Reactor | doi.org/10.13182/NT84-A33334
Articles are hosted by Taylor and Francis Online.
A simplified model is presented that permits one to calculate the average activity on the fuel elements of a reactor that operates under continuous refueling, based on the assumption of crud interchange between fuel element surface and coolant in the form of particulate material only and using the crud specific activity as an empirical parameter determined in plant. The net activity flux from core to out-of-core components is then calculated in the form of parametric curves depending on crud specific activity and rate of particulate release from fuel surface. In pressure vessel reactors, contribution to out-of-core radionuclide inventory arising in the release of activated materials from core components must be taken into account. The contribution from in situ activation of core components is calculated from the rates of release and the specific activities corresponding to the exposed surface of the component (calculated in a straightforward way on the basis of core geometry and neutron fluxes). The rates of release can be taken from the literature, or in the case of cobalt-rich alloys, can be calculated from experimentally determined cobalt contents of structural components and crud. For pressure vessel reactors operating under continuous refueling, activation of deposited crud and release of activated materials are compared; the latter, in certain cases, may represent a sizable (and even the largest) fraction of the total cobalt activity. It is proposed that the ratio of activities of 59Fe to 54Mn may be used as a diagnostic tool for in situ activation of structural materials; available data indicate ratios close to unity for pressure tube heavy water reactors (no in situ activation) and ratios around 4 to 10 for pressure vessel, heavy water reactors.