ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Belle R. Upadhyaya, Malgorzata Skorska
Nuclear Technology | Volume 64 | Number 1 | January 1984 | Pages 70-77
Technical Paper | Technique | doi.org/10.13182/NT84-A33327
Articles are hosted by Taylor and Francis Online.
Instrument fault detection and estimation is important for process surveillance, control, and safety functions of a power plant. The method incorporates the dual-hypotheses decision procedure and system characterization using data-driven time-domain models of signals representing the system. The multivariate models can be developed on-line and can be adapted to changing system conditions. For the method to be effective, specific subsystems of pressurized water reactors were considered, and signal selection was made such that a strong causal relationship exists among the measured variables. The technique is applied to the reactor core subsystem of the loss-of-fluid test reactor using in-core neutron detector and core-exit thermocouple signals. Thermocouple anomalies such as bias error, noise error, and slow drift in the sensor are detected and estimated using appropriate measurement models.