ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Folco Casadei, Mario Dalle Donne+
Nuclear Technology | Volume 64 | Number 1 | January 1984 | Pages 43-69
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT84-A33326
Articles are hosted by Taylor and Francis Online.
The coolant flow across the perforated dip-plate during a hypothetical core disruptive accident in a liquid-metal fast breeder reactor was simulated in a one-dimensional model. Several experiments with water as fluid and with various perforation ratios of the dip-plate and different initial heights of the fluid head over the dip-plate were run. The pressure drop across the dip-plate and the forces acting on the dipplate and on the upper plug of the reactor vessel were measured in a wide range of Reynolds and Strouhal numbers and of an acceleration parameter. The flow pattern downstream from the perforated plate was filmed with a high-speed camera. The resistance coefficients for the transient flow of the coolant through the perforated plate were obtained as a function of the acceleration. The forces acting on the upper plug and their time integral were compared with those acting on the dip-plate. Finally, using highspeed film pictures, the formation of fluid jets downstream from the dip-plate was investigated.