ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Rahim Nabbi
Nuclear Technology | Volume 64 | Number 1 | January 1984 | Pages 5-13
Technical Paper | Nuclear Safety | doi.org/10.13182/NT84-A33321
Articles are hosted by Taylor and Francis Online.
The core dynamic analysis of an anticipated heat removal transient without scram in a high-temperature gas-cooled reactor has indicated that in case of a failure of core cooling, the reactor undergoes a selfshutdown after 1 min because of its negative temperature coefficients of reactivity. If the decay heat removal system operates according to plant specification, recriticality, and thus nuclear power generation, occurs. However, the maximum rise in fuel elements temperature is limited to 50°C due to the high heat capacity of the core. Without taking into consideration the effect of xenon feedback on the neutron kinetics, a new steady core state is established after 2 h in which the fuel temperature and gas outlet temperature at the lower core edge are 195°C higher than in normal operation. Due to transient xenon poisoning, a rise in gas outlet temperature only occurs during the first 70 min and amounts to 70°C. For this reason undesirable transient strains on the components connected behind the core are not expected. A slow xenon buildup during the first hour ensures a long-term subcriticality of the reactor. Without any contribution from the shutdown system, this leads to a decrease in nuclear power and thus to core cooling with functioning decay heat removal.