ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
William L. Kuhn, Richard D. Peters, Scott A. Simonson
Nuclear Technology | Volume 63 | Number 1 | October 1983 | Pages 82-89
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT83-A33304
Articles are hosted by Taylor and Francis Online.
A leach model is presented for a commonly studied commercial nuclear waste glass, PNL 76-68. Boron release is taken to be a monitor of the reaction rate of the glass, while the actual releases of many other glass constituents into solution during static tests are evidently controlled by solubilities. The reaction rate determined in this way passes from linear to parabolic kinetics over the duration of the experiments analyzed, and boron concentrations in solution are found to be a function of the product of time and surface area-to-solution volume ratio. This behavior is found to be explained well by assuming the reaction is impeded by resorption of reaction products onto the reacting surface. Two model parameters are found as functions of temperature by fitting the model to published data. It is concluded that the accumulation of silica near the glass surface in a waste package in a repository could limit the rate of reaction of the glass, but not that the reaction would cease as silica reaches its solubility limit in solution.