ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
G. Kocamustafaogullari, S. H. Chan
Nuclear Technology | Volume 63 | Number 1 | October 1983 | Pages 23-39
Technical Paper | Nuclear Safety | doi.org/10.13182/NT83-A33300
Articles are hosted by Taylor and Francis Online.
Consideration is given to a fuel-dominated bubble, which is assumed to have just penetrated into the sodium pool in a spherical form subsequent to a hypothetical core disruptive accident. The two-phase bubble mixture is formulated as it rises through the sodium pool to the cover-gas region. The formulation takes into account the effects of the nonequilibrium mass transfer at the interfaces and of the radiative cooling of the bubble as well as the kinematic, dynamic, and thermal effects of the surrounding fields. The results of calculation for the amount of the fuel vapor condensed before the bubble reaches the cover-gas region are presented over a wide possible range of the evaporation coefficient as well as the liquid sodium-bubble interface absorbtivity. It is shown that the effects of nonequilibrium mass transfer become more meaningful at the later stage of bubble rise where the temperature difference between the liquid fuel and the gaseous mixture has been increased. The thermal radiative cooling is found to be very effective in attenuating the fuel content of the bubble; depending on the value of the liquid sodium-bubble absorbtivity, a great reduction of fuel vapor can result. Consequently, if the condensed fuel falls out of the bubble, the thermal radiation, which condenses out most of the fuel vapor, can effectively prevent and eliminate most of the fuel leakage from the reactor vessel.