ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R. Bruce Matthews, Richard J. Herbst
Nuclear Technology | Volume 63 | Number 1 | October 1983 | Pages 9-22
Technical Paper | Fission Reactor | doi.org/10.13182/NT83-A33299
Articles are hosted by Taylor and Francis Online.
Uranium-plutonium carbide offers an improved fuel system for advanced breeder reactors. The high-thermal conductivity and density of carbide fuels permit superior breeding performance and high specific power operation. These advantages combine to increase plutonium production, reduce fuel cycle and power costs, and lower plant capital costs. The carbide advantages are obtained at conservative fuel system design and operating conditions. Carbide fabrication technology has been demonstrated by the production of quality-assured fuel elements for irradiation testing. The carbide irradiation test program has demonstrated that high burnup can be achieved with several designs and that the consequences of postulated off-normal operating events are benign. Design bases to support helium- and sodium-bonded carbide fuel pin test irradiations in the Fast Flux Test Facility have been developed in the Experimental Breeder Reactor and the Transient Reactor irradiation tests.