ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
Yasuo Motoki, Mitsuo Naritomi, Mitsugu Tanaka, Gunji Nishio, Kazuichiro Hashimoto, Susumu Kitani
Nuclear Technology | Volume 63 | Number 2 | November 1983 | Pages 316-329
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT83-A33290
Articles are hosted by Taylor and Francis Online.
Heat removal tests for pressurized water reactor (PWR) containment spray were carried out to investigate effectiveness of the depressurization by Japan Atomic Energy Research Institute model containment (7-m diameter, 20 m high, and 708-m3 volume) with PWR spray nozzles. The depressurization rate is influenced by the spray heat transfer efficiency and the containment wall surface heat transfer coefficient. The overall spray heat transfer efficiency was investigated with respect to spray flow rate, weight ratio of steam/air, and spray height. The spray droplet heat transfer efficiency was investigated whether the overlapping of spray patterns gives effect or not. The effect was not detectable in the range of large value of steam/air, however, it was better in the range of small value of it. The experimental results were compared with the calculated results by computer code CONTEMPT-LT/022. The overall spray heat transfer efficiency was almost 100% in the containment pressure, ranging from 2.5 to 0.9 kg/cm2·G, so that the code was useful on the prediction of the thermal-hydraulic behavior of containment atmosphere in a PWR accident condition.