ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Walter Seifritz
Nuclear Technology | Volume 63 | Number 2 | November 1983 | Pages 286-294
Technical Paper | Economic | doi.org/10.13182/NT83-A33288
Articles are hosted by Taylor and Francis Online.
A nuclear reactor strategy that involves light water reactors (LWRs) and advanced pressurized water reactors (APWRs) with a high conversion ratio was analyzed in a logistical manner assuming a finite resource of ∼5 million metric tons of natural uranium. The emphasis lies in the treatment of the dynamics of deploying this two-component LWR-APWR system. The result is that the improvement of the uranium utilization is a function of time and reaches its maximum value (a factor of ∼3 compared with the classical plutonium recycling) only at the very end of the cheap natural uranium era. In view of the future role of nuclear energy in covering a substantial part of the global energy demand, it is shown that an LWR-APWR reactor strategy could neither reach an acceptable power level nor would it be able to support such a level over a significant period of time. If we want to raise the nuclear capacity to a reasonable level, the early introduction of the fast breeder reactor is unavoidable.