ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
M. Broc, J. Sannier, G. Santarini
Nuclear Technology | Volume 63 | Number 2 | November 1983 | Pages 197-208
Technical Paper | Fission Reactor | doi.org/10.13182/NT83-A33280
Articles are hosted by Taylor and Francis Online.
A set of experimental studies is presented as a first approach to the problems that liquid-lead circuits might pose in the molten salt reactor design with cooling by direct contact between the salt and this liquid metal. Technologically it appears that the components of circuits developed for the use of liquid sodium in fast neutron breeder reactors (valves, electromagnetic pumps and flowmeters, pressure transducers, and cold traps) can be used in the presence of liquid lead, though with certain restrictions. Where corrosion is concerned, ferritic steels, although subject to mass transfer phenomena, are much more resistant than austenitic steels at the temperatures currently adopted in the molten salt reactor design. Finally, liquid lead could have a slight embrittling effect on ferritic steels, but this phenomenon needs to be checked more thoroughly.