ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Martin A. Molecke, James A. Ruppen, Ronald B. Diegle
Nuclear Technology | Volume 63 | Number 3 | December 1983 | Pages 476-506
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT83-A33274
Articles are hosted by Taylor and Francis Online.
Studies on the corrosion and mechanical behavior of TiCode-12 and other titanium alloys to be used as candidate canister or overpack barriers in a high-level waste (HLW) repository or test facility in salt have been in progress at Sandia National Laboratories since 1976. Titanium alloys were selected as the primary materials for detailed testing based on candidate screening analyses (general corrosion and economic assessments) of ∼20 different alloys. The corrosion behavior of TiCode-12 has been evaluated as a function of: brine composition, temperature, time, pH, oxygen concentration, and gamma radiolysis. Uniform corrosion rates are in the range of 0.1 to 10 µm/yr; no significant pitting or crevice corrosion has been observed. This can be compared to the long-term measured rate of 0.13 mm/yr for ductile cast iron in Brine A, analyzed as a corrosion-allowance canister material. The highly adherent, passivating titanium oxide film that provides the corrosion protection has been evaluated via electrochemical polarization and surface analysis techniques to enable modeling of the corrosion mechanism(s). An increase in the corrosion rate by a factor of ∼2 was observed for sensitized TiCode-12; the rate appears to be modified by the Ti2Ni intermetallic phase and iron impurity content. Alterations in the composition and processing procedure of TiCode-12 have been evaluated to optimize corrosion, mechanical, and mill-producibility properties for HLW package applications. Slow strain rate testing of TiCode-12 revealed no apparent susceptibility to stress corrosion cracking; no significant changes in tensile properties were observed, but alterations in fracture mode were determined to be caused by internal hydrogen content. Some embrittlement occurs at hydrogen concentrations in the range of 200 to 300 ppm by weight (wppm), but the macroscopic mechanical properties of TiCode-12 are not significantly affected at concentrations up to 1100 wppm. Further research on slow crack growth threshold stress intensity as a function of hydrogen content is required before any hydrogen content limit can be imposed. Based on the analysis of available corrosion and metallurgical results, an all-TiCode-12 HLW canister package for use in a repository or test facility in salt is being proposed. Such a simplified HLW canister could provide long-term containment integrity and significantly minimize total HLW isolation system costs when compared to other waste package design concepts.