ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Martin A. Molecke, James A. Ruppen, Ronald B. Diegle
Nuclear Technology | Volume 63 | Number 3 | December 1983 | Pages 476-506
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT83-A33274
Articles are hosted by Taylor and Francis Online.
Studies on the corrosion and mechanical behavior of TiCode-12 and other titanium alloys to be used as candidate canister or overpack barriers in a high-level waste (HLW) repository or test facility in salt have been in progress at Sandia National Laboratories since 1976. Titanium alloys were selected as the primary materials for detailed testing based on candidate screening analyses (general corrosion and economic assessments) of ∼20 different alloys. The corrosion behavior of TiCode-12 has been evaluated as a function of: brine composition, temperature, time, pH, oxygen concentration, and gamma radiolysis. Uniform corrosion rates are in the range of 0.1 to 10 µm/yr; no significant pitting or crevice corrosion has been observed. This can be compared to the long-term measured rate of 0.13 mm/yr for ductile cast iron in Brine A, analyzed as a corrosion-allowance canister material. The highly adherent, passivating titanium oxide film that provides the corrosion protection has been evaluated via electrochemical polarization and surface analysis techniques to enable modeling of the corrosion mechanism(s). An increase in the corrosion rate by a factor of ∼2 was observed for sensitized TiCode-12; the rate appears to be modified by the Ti2Ni intermetallic phase and iron impurity content. Alterations in the composition and processing procedure of TiCode-12 have been evaluated to optimize corrosion, mechanical, and mill-producibility properties for HLW package applications. Slow strain rate testing of TiCode-12 revealed no apparent susceptibility to stress corrosion cracking; no significant changes in tensile properties were observed, but alterations in fracture mode were determined to be caused by internal hydrogen content. Some embrittlement occurs at hydrogen concentrations in the range of 200 to 300 ppm by weight (wppm), but the macroscopic mechanical properties of TiCode-12 are not significantly affected at concentrations up to 1100 wppm. Further research on slow crack growth threshold stress intensity as a function of hydrogen content is required before any hydrogen content limit can be imposed. Based on the analysis of available corrosion and metallurgical results, an all-TiCode-12 HLW canister package for use in a repository or test facility in salt is being proposed. Such a simplified HLW canister could provide long-term containment integrity and significantly minimize total HLW isolation system costs when compared to other waste package design concepts.