ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Michel Colin, Michel Coquerelle, Ian L. F. Ray, Claudio Ronchi, Clive T. Walker, Hubert Blank
Nuclear Technology | Volume 63 | Number 3 | December 1983 | Pages 442-460
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT83-A33271
Articles are hosted by Taylor and Francis Online.
A detailed analysis of hyperstoichiometric carbide fuel, which operated under sodium-bonding conditions up to 12.5 at. % burnup in the Rapsodie reactor, yields the description of the four contributions to geometric fuel swelling as functions of temperature and burnup: (a) solid fission products and cesium, (b) fission gas swelling, (c) coarse porosity, and (d) the sum of all direct and indirect statistical swelling effects arising from the fracturing of the pellets. Fission gas swelling has to be separated into the contributions of three bubble populations and gas in solution. Between 7 and 11 at.% burnup, the relative amounts of the four swelling contributions are about the same and do not vary with burnup. The total amount of the cross-sectional swelling ΓA of a pellet can be approximately represented as a function of burnup F and linear heat rating x byΓA = b×Fn,where b and n are empirical constants and b decreases as a function of fuel composition in the order MC > MC M2C3 > M(C,N) > MN. The carbide pins investigated in this work, having a smear density of 72% and maximum linear heat rating of 88 kW/m at a cladding temperature of 820 K, reach a maximum burnup of 12.5 at.% with very little fuel-cladding mechanical interaction. The most promising development potential for carbide fuel lies in improving its mechanical properties, i.e., in reducing the propensity of the pellets to fracture.