ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State legislation: Illinois bill aims to lift state’s remaining nuclear moratorium
A bill that would fully repeal the state’s entire moratorium on new nuclear projects survived a key deadline in the Illinois General Assembly last week.
To stay afloat in the spring legislative session, bills needed to be assigned to committee by March 21, and state Sen. Sue Rezin’s Senate Bill 1527 now sits with the Senate’s Energy and Public Utilities committee for review.
Tomaz Zagar, Matjaz Ravnik
Nuclear Technology | Volume 140 | Number 1 | October 2002 | Pages 113-126
Technical Paper | Radioisotopes | doi.org/10.13182/NT02-A3327
Articles are hosted by Taylor and Francis Online.
The results of activation studies of TRIGA research reactor concrete shielding are given. Samples made of ordinary and barytes concrete were irradiated in the reactor to simulate neutron activation in the shielding concrete. Long-lived neutron-induced gamma-ray-emitting radioactive nuclides were measured in the samples with a high-purity germanium detector. The most active long-lived radioactive nuclides in the ordinary concrete samples were found to be 60Co and 152Eu. In the barytes concrete samples, the most active long-lived radioactive nuclides were 60Co, 133Ba, and 152Eu. Activation in the concrete was also calculated using the ORIGEN2 code and compared to experimental results. Simple radioactive nuclide generation and depletion calculation using one-group cross-section libraries provided together with the ORIGEN2 code did not give conservative results. Significant discrepancies were observed for some nuclides. For accurate long-lived radioactive nuclide generation in reactor shielding, material-specific cross-section libraries should be generated and verified by measurement.