ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
J. G. Kelly, K. T. Stalker
Nuclear Technology | Volume 63 | Number 3 | December 1983 | Pages 397-414
Technical Paper | Nuclear Safety | doi.org/10.13182/NT83-A33267
Articles are hosted by Taylor and Francis Online.
Recent proof tests have shown that the annular core research reactor (ACRR) fuel motion detection system has reached its design goals of providing high temporal and spatial resolution pictures of fuel distributions in the ACRR. The coded aperture imaging system (CAIS) images the fuel by monitoring the fission gamma rays from the fuel that pass through collimators in the reactor core. The gamma-ray beam is modulated by coded apertures before producing a visible light coded image in thin scintillators. Each coded image is then amplified and recorded by an optical-image-intensifier/fast-framing-camera combination. The proximity to the core and the coded aperture technique provide a high data collection rate and high resolution. Experiments of CAIS at the ACRR conducted under steady-state operation have documented the beneficial effects of changes in the radiation shielding and imaging technique. The spatial resolutions are 1.7 mm perpendicular to the axis of a single liquid-metal fast breeder reactor fuel pin and 9 mm in the axial dimension. Changes in mass of 100 mg in each resolution element can be detected each frame period, which may be from 5 to 100 ms. This diagnostic instrument may help resolve important questions in fuel motion phenomenology.