ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Joonhong Ahn, Daisuke Kawasaki, Paul L. Chambré
Nuclear Technology | Volume 140 | Number 1 | October 2002 | Pages 94-112
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT02-A3326
Articles are hosted by Taylor and Francis Online.
The relationship among the repository performance, the canister-array configuration, and the radionuclide mass in waste has been investigated by developing a radionuclide-transport model, where multiple waste canisters and their spatial configuration are taken into account.A mathematical analysis and numerical results show that the radionuclide concentration in the groundwater leaving the canister array increases with the number of canisters included in a water stream parallel to the array axis, but not necessarily in a linear manner. The dependency on the number of canisters is determined mainly by canister-array configuration to the water flow and by model assumptions for transport between multiple canisters.Reduction in the initial mass loading in the waste can potentially have significant effects on the repository performance. The way the mass-reduction effects on the repository performance appear is related to the canister-array configuration. Thus, designs for a repository and a partitioning-transmutation system should be done in a coupled manner.