ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Joonhong Ahn, Daisuke Kawasaki, Paul L. Chambré
Nuclear Technology | Volume 140 | Number 1 | October 2002 | Pages 94-112
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT02-A3326
Articles are hosted by Taylor and Francis Online.
The relationship among the repository performance, the canister-array configuration, and the radionuclide mass in waste has been investigated by developing a radionuclide-transport model, where multiple waste canisters and their spatial configuration are taken into account.A mathematical analysis and numerical results show that the radionuclide concentration in the groundwater leaving the canister array increases with the number of canisters included in a water stream parallel to the array axis, but not necessarily in a linear manner. The dependency on the number of canisters is determined mainly by canister-array configuration to the water flow and by model assumptions for transport between multiple canisters.Reduction in the initial mass loading in the waste can potentially have significant effects on the repository performance. The way the mass-reduction effects on the repository performance appear is related to the canister-array configuration. Thus, designs for a repository and a partitioning-transmutation system should be done in a coupled manner.