ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Allen G. Croff
Nuclear Technology | Volume 62 | Number 3 | September 1983 | Pages 335-352
Technical Paper | Analyses | doi.org/10.13182/NT83-1
Articles are hosted by Taylor and Francis Online.
ORIGEN2 is a versatile point-depletion and radioactive-decay computer code for use in simulating nuclear fuel cycles and calculating the nuclide compositions and characteristics of materials contained therein. It represents a revision and update of the original ORIGEN computer code, which was developed at the Oak Ridge National Laboratory (ORNL) and distributed worldwide beginning in the early 1970s. Included in ORIGEN2 are provisions for incorporating data generated by more sophisticated reactor physics codes, a free-format input, and a highly flexible and controllable output; with these features, ORIGEN2 has the capability for simulating a wide variety of fuel cycle flow sheets. The decay, cross-section, fission product yield, and photon emission data bases employed by ORIGEN2 have been extensively updated, and the list of reactors that can be simulated includes pressurized water reactors, boiling water reactors, liquid-metal fast breeder reactors, and Canada deuterium uranium reactors. A number of verification activities have been undertaken, including (a) comparison of ORIGEN2 decay heat results with both calculated and experimental values, and (b) comparison of predicted spent fuel compositions with measured values. The agreement between ORIGEN2 and the comparison bases is generally very good. Future work concerning ORIGEN2 will involve continued maintenance and user support along with additional verification studies and limited modifications to enhance its flexibility and usability. ORIGEN2 can be obtained, free of charge, from the ORNL Radiation Shielding Information Center.