ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Michael Boček, Claus Petersen, Lothar Schmidt
Nuclear Technology | Volume 62 | Number 3 | September 1983 | Pages 284-297
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT83-A33252
Articles are hosted by Taylor and Francis Online.
The life fraction rule is applied to predict the time to failure of internally pressurized Zircaloy-4 cladding tubes subjected to temperature ramps similar to those expected in a hypothetical loss-of-coolant accident. For given loading conditions, the calculations are solely based on data from uniaxial stress rupture tests. No fitting procedure is involved in the comparison between prediction and results of burst tests. This evidently is an advantage of the present procedure. The agreement between the results of calculations and experiments is good. A modified Monkman-Grant (MMG) relationship, which connects the lifetime with the minimum creep rate and the strain to failure, is used to predict the failure strain of Zircaloy-4 cladding subjected to temperature ramps. This problem turned out to be more complicated than the prediction of lifetime. Contrary to the latter, due to the anisotropy of strain, data from burst experiments enter into the failure strain calculations. Thus the applicability of this method in the present form is restricted to particular loading conditions. However, considering the complexities of the problem, the agreement between experiments and calculations is encouraging.