ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
Ivars Neretnieks
Nuclear Technology | Volume 62 | Number 1 | July 1983 | Pages 110-115
]Technical Note | Radioactive Waste Management | doi.org/10.13182/NT83-A33238
Articles are hosted by Taylor and Francis Online.
In a repository for high-level nuclear waste in bedrock that may carry water, the waste will eventually come in contact with water. Radionuclides will dissolve in the water and migrate away from the repository. In crystalline rock in Sweden, the waters at repository depths are reducing. Many of the important radionuclides, e.g., neptunium, uranium, and technetium, have very low solubilities under these conditions (parts per billion levels). The solubility will considerably limit the transport of these species. If by some means the conditions were to change from reducing to oxidizing, the solubility of these species would increase very much, in some cases by 4 to 6 orders of magnitude. Under such circumstances, these nuclides would escape much faster. We have investigated one possible way in which the redox conditions might change, i.e., spent fuel has a considerable alpha activity, which may radiolyze water and produce oxidizing agents such as hydrogen peroxide. The hydrogen peroxide will make the water oxidizing. The compensating factor is ferrous iron in the bedrock. In the investigation of the interaction of these two species, a con-ceptional and a mathematical model is developed describing the movement of the redox front downstream of a repository. A sample calculation based on minimum measured ferrous iron contents in the bedrock and computed (conservatively on the high side) hydrogen peroxide production shows that the redox front could move several tens of metres downstream in the million-year perspective. The rate of radiolysis would decrease considerably if the spent fuel is not wetted to the high degree assumed in the calculations. The results in the sample calculation should be seen as maximum values for the type of repository considered