ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Ronald J. DiMelfi, John M. Kramer
Nuclear Technology | Volume 62 | Number 1 | July 1983 | Pages 51-61
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT83-A33231
Articles are hosted by Taylor and Francis Online.
Characteristics of solid fuel fragmentation and energetic spallation during hypothetical accident transients are calculated. Fission gas, having migrated to the grain boundaries as intergranular bubbles, is assumed to provide the potential energy sufficient to fracture the fuel and induce fuel particle motion radially. Fuel cladding is assumed to maintain a radial constraint on the fuel until the cladding fails by melting. It is shown that the vapor pressure of elemental cesium contained in the fuel cladding gap can impose a compressive stress on the fuel sufficient to maintain a large quantity of intergranular fission gas trapped within equilibrium bubbles. On cladding melting and relaxation of constraint the extent of fuel fracture initiated at the overpressured bubbles is calculated. It is shown that expanding fission gas in the fractured grain boundaries is sufficient to eject fuel particles at substantial velocities. The results of calculations are consistent with experimental observations. The calculated compressive constraint of 3 to 5 MPa is in agreement with cladding failure stresses near the melting point and with those tensile stress levels necessary to cause observed cladding swelling. In further concurrence with the experiment, it was found that higher burnup fuel (≈9.9 at.% burnup) containing more fission gas was more likely to undergo energetic spallation, with larger quantities of fuel moving at greater speeds, than fuel irradiated to intermediate levels (4.7 at.% burnup). In the high burnup case, fuel particles of 0.5 to 1.0 mm in size were ejected radially at speeds >0.5 m/s. In the intermediate burnup case, smaller particles ≈ 0.2 mm in size move somewhat slower at speeds ≤0.4 m/s. A low burnup fuel (2.3 at.%) was calculated not to fragment and spall at all. Since the calculated vapor pressure of elemental cesium was used to account for the compressive constraint, the analysis requires the presence of cesium to predict spallation.