ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Alex Tsechanski, Gad Shani
Nuclear Technology | Volume 62 | Number 2 | August 1983 | Pages 227-237
Technical Paper | Analyse | doi.org/10.13182/NT83-A33220
Articles are hosted by Taylor and Francis Online.
A 95- X 95- X 95-cm nuclear grade graphite stack was bombarded with a well-collimated monoenergetic 14.75- ± 0.05-MeV fast neutron beam from a tritium target of a neutron generator. The neutron spectra measured in such types of integral experiments are susceptible to the various neutron interactions (elastic and inelastic scattering by the first few excited levels including anisotropy of angular distributions). This, in turn, facilitates identification and treatment of discrepancies between the experimental and calcula-tional results. The neutron spectra were measured with a 50- X 50-mm NE-213 liquid scintillator using the pulse shape discrimination technique to reject gamma-ray counts. The linearity test of the neutron spectrometer was performed by means of radioactive gamma-ray sources and D(d,n)He3 and T(d,n)He4 neutrons. Amplification factors (in light units per channel) were achieved with a 11Na22 radioactive source. The spectrometer was checked with the D(d,n)He3, T(d,n)He4 reactions and an americium-beryllium radioactive neutron source. The measured proton recoil spectra were unfolded in the neutron spectra by the FORIST unfolding code.