ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
G. Ronald Dalton, Michael T. Gamble
Nuclear Technology | Volume 62 | Number 2 | August 1983 | Pages 222-226
Technical Paper | Analyse | doi.org/10.13182/NT83-A33219
Articles are hosted by Taylor and Francis Online.
A consistent method of solving systems of coupled time-dependent differential equations with vastly divergent time constants has been developed. This method is directly applicable to finite difference techniques of solutions using matrix algebra. Application to systems of isotope burnup and buildup equations with time constants ranging from minutes to millions of years demonstrates the utility of the method. Similarity to the prompt jump method of reactor kinetics indicates applicability to a wider range of positive as well as negative time constant systems.