ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Krishna Vinjamuri, Richard R. Hobbins
Nuclear Technology | Volume 62 | Number 2 | August 1983 | Pages 145-150
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT83-A33213
Articles are hosted by Taylor and Francis Online.
A postirradiation examination of two uranium aluminide (UAlx) fuel plates from the Advanced Test Reactor (ATR) was conducted. The two fuel plates failed due to pinhole corrosion during irradiation to ∼76% of the maximum burnup limit of 2.3 X 1021 fission/cm3. It is believed that the aluminum cladding failed due to pit corrosion initiated at an existing pit ∼0.0076 to 0.0102 cm (3 to 4 mil) deep at a hot spot. About 0.2 and 0.8 g of UAlx fuel was washed out of these plates through the pinholes due to aqueous corrosion and erosion of the UAlx under ATR primary coolant conditions. Aluminum cladding pit corrosion depth and UAlx fuel corrosion-erosion mass rates under the ATR primary coolant conditions were calculated to be 0.23 cm/yr and 14 g/yr, respectively.