ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Mark J. Holowach, Lawrence E. Hochreiter, Fan-Bill Cheung, David L. Aumiller
Nuclear Technology | Volume 140 | Number 1 | October 2002 | Pages 18-27
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT02-A3320
Articles are hosted by Taylor and Francis Online.
Critical heat flux (CHF) at a low-flow condition in a small-hydraulic-diameter duct is an important phenomenon for a Materials Test Reactor/Advanced Test Reactor (MTR/ATR) design under a number of accident conditions, including reflood transients. Current CHF models in the literature, such as the Mishima/Nishihara and Oh/Englert CHF models, are based on macroscopic system parameters and not local thermal-hydraulic conditions. These macroscopic parameter-based models cannot be readily used for analysis in transient best-estimate thermal-hydraulic codes. The present work focuses on developing a low-flow-rate CHF correlation, based on local conditions, that is amenable to implementation into a best-estimate transient thermal-hydraulic code for a small-hydraulic-diameter duct. The model development proceeds with a means of correlating CHF data to local conditions parameters and then applying a correction factor to the resulting correlation, subsequently permitting accurate predictions over a range of pressures. An evaluation of the proposed local conditions-based CHF model is conducted by predicting independent sets of CHF experimental results over a range of flow rate, pressure, and subcooling conditions. Conclusions on the viability of the proposed CHF model and suggestions for future efforts in improving the reflood heat transfer CHF models for small-hydraulic-diameter ducts are provided with an evaluation of the model results.