ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Mark J. Holowach, Lawrence E. Hochreiter, Fan-Bill Cheung, David L. Aumiller
Nuclear Technology | Volume 140 | Number 1 | October 2002 | Pages 18-27
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT02-A3320
Articles are hosted by Taylor and Francis Online.
Critical heat flux (CHF) at a low-flow condition in a small-hydraulic-diameter duct is an important phenomenon for a Materials Test Reactor/Advanced Test Reactor (MTR/ATR) design under a number of accident conditions, including reflood transients. Current CHF models in the literature, such as the Mishima/Nishihara and Oh/Englert CHF models, are based on macroscopic system parameters and not local thermal-hydraulic conditions. These macroscopic parameter-based models cannot be readily used for analysis in transient best-estimate thermal-hydraulic codes. The present work focuses on developing a low-flow-rate CHF correlation, based on local conditions, that is amenable to implementation into a best-estimate transient thermal-hydraulic code for a small-hydraulic-diameter duct. The model development proceeds with a means of correlating CHF data to local conditions parameters and then applying a correction factor to the resulting correlation, subsequently permitting accurate predictions over a range of pressures. An evaluation of the proposed local conditions-based CHF model is conducted by predicting independent sets of CHF experimental results over a range of flow rate, pressure, and subcooling conditions. Conclusions on the viability of the proposed CHF model and suggestions for future efforts in improving the reflood heat transfer CHF models for small-hydraulic-diameter ducts are provided with an evaluation of the model results.