ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Yuji Ishiguro
Nuclear Technology | Volume 61 | Number 1 | April 1983 | Pages 121-126
Technical Note | Fuel Cycle | doi.org/10.13182/NT83-A33150
Articles are hosted by Taylor and Francis Online.
A new concept of fueling a liquid-metal fast breeder reactor (LMFBR) is proposed with the aims of increasing the resource base of nuclear energy for the generation of electricity and of resolving the safety question of current LMFBRs. The basic feature of the concept is the use of 233U/Th fuel in a central part of the LMFBR core and Pu/U fuel in the outer core. The reactor is flexible in its utilization of nuclear fuels and can be an efficient breeder reactor with either the uranium or the thorium cycle. The safety characteristics of the reactor are superior to those of plutonium-fueled LMFBRs of current designs with the sodium-void reactivities being negative almost everywhere in the core. The design and thermal characteristics of the proposed pins indicate that in the 233U/Th-fueled inner core, thick soft-spectrum pins can be advantageous over solid pins of a more conventional type.