ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The current status of heat pipe R&D
Idaho National Laboratory under the Department of Energy–sponsored Microreactor Program recently conducted a comprehensive phenomena identification and ranking table (PIRT) exercise aimed at advancing heat pipe technology for microreactor applications.
J. Louis Tylee
Nuclear Technology | Volume 61 | Number 1 | April 1983 | Pages 25-32
Technical Paper | Nuclear Safety | doi.org/10.13182/NT83-A33140
Articles are hosted by Taylor and Francis Online.
A simple real-time model of the loss-of-fluid test (LOFT) reactor is derived and used to predict reactor performance during an anticipated transient without scram (ATWS). The developed model consists of only six nonlinear differential equations. Model states are precursor concentrations of two delayed neutron groups, average fuel and cladding temperatures, average core coolant temperature, and measured reactor outlet temperature. Ancillary dynamic descriptions of a hot fuel rod allow computation of peak rod temperatures. Comparing model calculations to actual LOFT ATWS measurements demonstrates the model’s phenomenological accuracy.