The effect of orificing on the core performance of a commercial-size heterogeneous liquid-metal fast breeder reactor was studied analytically. The thermal power output was flattened at beginning of life, and the coolant flow rate was chosen such that the maximum inner cladding temperature of a driver fuel and a blanket fuel was <620°C at both beginning of equilibrium life (BOEL) and end of equilibrium life (EOEL). The difference between reactor outlet temperatures at BOEL and EOEL was then calculated for six core configurations: one homogeneous core configuration and five heterogeneous ones. The results showed that the core outlet temperature variation due to the change of the power profile of the radial heterogeneous core configurations is similar to that of the homogeneous one, even when a single type of orificing is used in each core zone, and it will not be necessary to use the more detailed orificing in each zone of a heterogeneous core configuration. The study concludes that for the present design, especially the thermal design, of some heterogeneous core configurations, it is feasible to control the change of the reactor outlet temperature with burnup, even when a single type of orificing is used in each core zone.