ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Rafael Macian, Paul Coddington
Nuclear Technology | Volume 139 | Number 3 | September 2002 | Pages 185-204
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT02-A3313
Articles are hosted by Taylor and Francis Online.
RETRAN-3D, a system analysis code currently employed by the nuclear industry in studies covering a wide variety of operational and accident scenarios, has not been extensively validated for application to loss-of-coolant accident (LOCA) scenarios.The results of the in-depth analysis of two experimental loss-of-coolant transients, namely, Test No. 9 in the French OMEGA facility, and the International Standard Problem 26 (ISP-26) in the Japanese ROSA-IV Facility are discussed. The OMEGA test simulated the blowdown phase of a double-ended cold-leg break, whereas the ISP-26 test simulated a small break (5%) in a full height, volume (1/48), and power (~1/342) scaled facility representing a typical two (or four)-loop pressurized water reactor (PWR) system.The RETRAN-3D results for the OMEGA test show good estimates of the important system parameters, with the best agreement corresponding to the use of the dynamic-slip flow model. A sensitivity analysis on the break flow showed that the Henry/Fauske-Isoenthalpic Expansion critical flow model yields the best results, which are significantly improved with a refined nodalization upstream of the break.The ISP-26 was also simulated using the dynamic-slip flow model. The results indicate that the code is able to calculate a small-break LOCA with a model including the main PWR system components and to reproduce the principal physical processes in a reasonable manner.In summary, this assessment shows the ability of RETRAN-3D to model LOCA scenarios in a reasonable way and also points to areas where further model improvement could result in more accurate simulations.