ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Rafael Macian, Paul Coddington
Nuclear Technology | Volume 139 | Number 3 | September 2002 | Pages 185-204
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT02-A3313
Articles are hosted by Taylor and Francis Online.
RETRAN-3D, a system analysis code currently employed by the nuclear industry in studies covering a wide variety of operational and accident scenarios, has not been extensively validated for application to loss-of-coolant accident (LOCA) scenarios.The results of the in-depth analysis of two experimental loss-of-coolant transients, namely, Test No. 9 in the French OMEGA facility, and the International Standard Problem 26 (ISP-26) in the Japanese ROSA-IV Facility are discussed. The OMEGA test simulated the blowdown phase of a double-ended cold-leg break, whereas the ISP-26 test simulated a small break (5%) in a full height, volume (1/48), and power (~1/342) scaled facility representing a typical two (or four)-loop pressurized water reactor (PWR) system.The RETRAN-3D results for the OMEGA test show good estimates of the important system parameters, with the best agreement corresponding to the use of the dynamic-slip flow model. A sensitivity analysis on the break flow showed that the Henry/Fauske-Isoenthalpic Expansion critical flow model yields the best results, which are significantly improved with a refined nodalization upstream of the break.The ISP-26 was also simulated using the dynamic-slip flow model. The results indicate that the code is able to calculate a small-break LOCA with a model including the main PWR system components and to reproduce the principal physical processes in a reasonable manner.In summary, this assessment shows the ability of RETRAN-3D to model LOCA scenarios in a reasonable way and also points to areas where further model improvement could result in more accurate simulations.