ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Lester Goldstein, Alfred A. Strasser
Nuclear Technology | Volume 60 | Number 3 | March 1983 | Pages 352-361
Technical Paper | LWR Control Materials—I and II / Nuclear Fuel | doi.org/10.13182/NT83-A33122
Articles are hosted by Taylor and Francis Online.
Extended cycle lengths and fuel burnups are receiving increased attention. Frequently, the attendant fuel management strategies in pressurized water reactors (PWRs) require burnable poison shims to control power distribution and to maintain a negative moderator coefficient. High energy (∼450 effective full-power days) fuel cycles utilizing both out-in and low-leakage assembly placement schemes provide some insight to the relative merits of UO2-Gd2O3 (gadolinia)- versus boron-bearing shims for PWR applications. Relative to using boron-bearing burnable shims in PWRs, gadolinia has important potential advantages and disadvantages. With proper application, the advantages point to a reduction in fuel cycle costs and increased fuel management flexibility. However, for proper application, the more complex gadolinia neutronics and thermal-mechanical design characteristics must be modeled accurately.