ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Laurence Rault, Murielle Heusch, Michel Allibert, Florent Lemort, Xavier Deschanel, Roger Boen
Nuclear Technology | Volume 139 | Number 2 | August 2002 | Pages 167-174
Technical Paper | Reprocessing | doi.org/10.13182/NT02-A3311
Articles are hosted by Taylor and Francis Online.
The investigation of the actinide and lanthanide distribution between a liquid metal and a molten fluoride salt shows a significant increase of the separation coefficient by using an aluminum-based pyrochemical system instead of a zinc-based system. The obtained values partly depend on the LiF/AlF3 ratio and can reach more than 30 000 when AlF3 is in excess with regard to the formation of the cryolite (Li3 AlF6). Furthermore, in the metal phase, the aluminum interacts with the lanthanides to a lesser extent than in other usual metallic solvents. This opens a new way to explore the feasibility of the separation of actinides and lanthanides in the field of nuclear fuel reprocessing.