ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Michael O. Fryer, William M. Yarbrough
Nuclear Technology | Volume 60 | Number 1 | January 1983 | Pages 14-22
Technical Paper | Fission Reactor | doi.org/10.13182/NT83-A33098
Articles are hosted by Taylor and Francis Online.
The performance of a Kalman filter that estimates core power in a pressurized water reactor was evaluated using data from the Loss of Fluid Test (LOFT) Reactor and linear error analysis techniques. The Kalman filter provides a more accurate core power estimate in real time than does the conventional method of power estimation. Accuracies of better than 0.75% of rated power are obtained with the Kalman filter. If this accuracy improvement can be translated into higher levels of power operation, then more revenue can be generated by a commercial power plant. Scaling the LOFT 150-MW(thermal) l accuracy improvement up to a 1000-MW(electric) commercial power plant size, assuming that average power production is increased by the amount of the accuracy improvement, results in more than $800 000 of extra revenue per year ($0.06/kW·h).