ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Subhash Chandra
Nuclear Technology | Volume 60 | Number 2 | February 1983 | Pages 278-290
Technical Paper | Radiation Effects and Their Relationship to Geological Repository / Nuclear Safety | doi.org/10.13182/NT83-A33084
Articles are hosted by Taylor and Francis Online.
A computer code, ANEXDI (analysis of extended disassembly), has been prepared for scoping studies of hydrodynamic interactions in typical core disruptive accidents in a fast power reactor. A two-phase compressible thermohydrodynamic model is coupled with neutron point kinetics equations and solved numerically, employing the well-known implicit multifield Eulerian technique for the hydrodynamics and an integrating factor method for the neutronics. Hydrodynamics of the ANEXDI code includes, at least parametrically, (a) interphase momentum transfer depending on the phase velocity difference, the phase acceleration difference, the radius of the dispersed phase particles, the viscosity coefficient of the continuous phase, and the drag coefficient, (b) intra-and interphase heat transfer depending on the various conductivity coefficients, and (c) local vapor generation and the concurrent pressurization. A good agreement is shown between some analytically solvable, one- and two-phase shock wave problems and the numerical solutions of the ANEXDI hydrodynamics and also between ANEXDI and VENUS calculations for a typical hypothetical core disruptive accident (HCDA) in a small 40-MW(thermal) fast reactor. Some calculations along with a simple mathematical theory are presented to emphasize the effect of certain interphase phenomena and of a modeling uncertainty of the two-phase flow hydrodynamic equations on a typical HCDA. This uncertainty does not visibly affect the shock tube simulation results due to the diffused shock wave fronts produced by the computer code, but it does affect some HCDA results quite significantly, as the reactivity calculation and hence the fission power calculation are very sensitive to the density profiles of a disassembling reactor system.