ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Subhash Chandra
Nuclear Technology | Volume 60 | Number 2 | February 1983 | Pages 278-290
Technical Paper | Radiation Effects and Their Relationship to Geological Repository / Nuclear Safety | doi.org/10.13182/NT83-A33084
Articles are hosted by Taylor and Francis Online.
A computer code, ANEXDI (analysis of extended disassembly), has been prepared for scoping studies of hydrodynamic interactions in typical core disruptive accidents in a fast power reactor. A two-phase compressible thermohydrodynamic model is coupled with neutron point kinetics equations and solved numerically, employing the well-known implicit multifield Eulerian technique for the hydrodynamics and an integrating factor method for the neutronics. Hydrodynamics of the ANEXDI code includes, at least parametrically, (a) interphase momentum transfer depending on the phase velocity difference, the phase acceleration difference, the radius of the dispersed phase particles, the viscosity coefficient of the continuous phase, and the drag coefficient, (b) intra-and interphase heat transfer depending on the various conductivity coefficients, and (c) local vapor generation and the concurrent pressurization. A good agreement is shown between some analytically solvable, one- and two-phase shock wave problems and the numerical solutions of the ANEXDI hydrodynamics and also between ANEXDI and VENUS calculations for a typical hypothetical core disruptive accident (HCDA) in a small 40-MW(thermal) fast reactor. Some calculations along with a simple mathematical theory are presented to emphasize the effect of certain interphase phenomena and of a modeling uncertainty of the two-phase flow hydrodynamic equations on a typical HCDA. This uncertainty does not visibly affect the shock tube simulation results due to the diffused shock wave fronts produced by the computer code, but it does affect some HCDA results quite significantly, as the reactivity calculation and hence the fission power calculation are very sensitive to the density profiles of a disassembling reactor system.