ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Leona Marshall Libby, M. G. Wurtele, Chris G. Whipple
Nuclear Technology | Volume 59 | Number 1 | October 1982 | Pages 85-98
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT82-A33055
Articles are hosted by Taylor and Francis Online.
It is technically feasible to site a retrievable but permanent surface storage facility for vitrified radioactive wastes in the northwestern Egyptian desert. Present-day commercial vitrification plants are in England and France and produce glass cylinders in the shape of an annulus, ∼9 ft high, clad in a stainless steel can, containing ∼25% of fission product and actinide oxides, weighing ∼10 tonnes, having a volume of ∼70 ft3, releasing ∼1.8 × 101 Btu heat/h. The high-level waste (HLW) glass cylinders, in lead shipping casks, are to be shipped to European ports by truck, sent to Mersa Matruh on the Egyptian coast, about ten at a time in small barges, then offloaded and sent by train a short distance inland to the site. The storage facility envisaged at the site is a concrete-walled round house with a radial crane, equipped with recanning facilities in case of breakage of stainless steel canisters, with a shop for repair of the train as needed, and with a turntable for the engine. Cooling is provided by natural air draft resulting from the canister surface temperature of ∼100°C. If needed, backup cooling is provided by equipment for forced-air drafts and by tanks of water. The canister arrangement is that produced by coaxial vertical stacking; horizontal coaxial arrangements are yet to be analyzed. The site chosen is exposed hard rock close to the Mediterranean in the northwest corner of the Egyptian desert. Groundwater is found at ∼100 m. The rainfall is ∼4 in./yr so that flash floods sometimes occur and surface drains are needed. Winds are mild and temperate. There is no recent seismicity and, judging from the horizontally bedded rock strata, has been none since the cretaceous period. There is no agriculture on the hard rock, no animal grazing, no archaeological ruins, and no present-day human occupation. There are very few indigenous plants, only those able to grow in rock cracks, and a few small animals and birds. Plume studies of the hot cooling air show no perceptible temperature rise beyond the boundaries of the reservation. Radon content of the plume, resulting from a worst-case break and devitrification of a glass cylinder, is not as large as the natural radon content of the desert air beyond the boundaries. Matters that should be more fully examined include alternative methods of solidification of HLW (such as in ceramics), more data on hydrology and meteorology, and a more detailed design of the stacking and cooling systems. Political Egyptian and international acceptability may be studied and may prove to be the most important factor in siting the proposed facility. We conclude that the northwestern Egyptian desert offers a highly promising site for international permanent and retrievable storage of the world’s vitrified radioactive waste for the necessary 500 yr. These findings are based on technical and economic considerations; institutional and political criteria were not part of this study. In a second study, four more deserts of the world were compared for suitable sites. These five deserts will be compared in a subsequent publication.