The disposal of radioactive wastes by launching them into space will require extensive treatment and preparation on the ground in order to convert these wastes into suitable payloads. If a particular radioactive element is to be managed by space disposal, then it will have to be separated from the wastes, concentrated, and converted into a suitable disposal form for launch. In many cases, this waste management approach will result in the construction and operation of highly complex and expensive radiochemical plants for treating many fuel cycle wastes and producing the necessary payloads. In addition, secondary wastes will usually result from the chemical processing steps that are required to produce these payloads. Also, some of the payloads that appear most attractive for space disposal with respect to launch requirements cause significant problems with respect to ground processing. Therefore, the decision to produce any particular payload for disposal must consider all of the ramifications for the ground processing systems as well as the launch vehicle. Preliminary evaluations of some of the projected impacts on ground systems, such as secondary waste production and radiochemical processing requirements, are presented for iodine, 14C, technetium, strontium, cesium, and actinide/lanthanide payloads that result from processing light water reactor fuel cycle wastes.