ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Anton Bayer, Klaus Burkart, Joachim Ehrhardt, Wolfgang Hübschmann, Manfred Schückler, Siegfried Vogt, Wolfgang Jacobi, Herwig G. Paretzke, Klaus-Rüdiger Trott, Eduard Hofer, Bernard Krzykacz
Nuclear Technology | Volume 59 | Number 1 | October 1982 | Pages 20-50
Technical Paper | Nuclear Safety | doi.org/10.13182/NT82-A33050
Articles are hosted by Taylor and Francis Online.
The possible accidental releases from nuclear power plants with pressurized water reactors are classified into eight release categories. To assess the damage resulting from these releases, a model for accident consequences (UFOMOD) is set up. In this model, the atmospheric dispersion and ground deposition are evaluated, and the space- and time-dependent activity concentration in the atmosphere and on the ground is calculated. From these concentration values, the potential doses on which the different protective measures and countermeasures depend are first determined. The doses to be expected are then calculated taking into account these protective measures and countermeasures. Based on these doses, the consequences are assessed for the population affected, in terms of somatic early fatalities, somatic late fatalities, and genetic exposure. The consequences are then assessed by running several times through the 8 release categories at 19 sites with a total of 25 reactor units. The calculations for each site are based on 115 different weather sequences of several hours’ duration, assuming that these sequences have the same probability in each of the 36 predetermined wind directions (each of 10 deg). In parallel, the corresponding frequencies of occurrence are determined. From the pairs of values “extent of consequences/frequency of occurrence,” the final results are derived: