ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Roger L. Clough, Kenneth T. Gillen
Nuclear Technology | Volume 59 | Number 2 | November 1982 | Pages 344-354
Technical Paper | Material | doi.org/10.13182/NT82-A33037
Articles are hosted by Taylor and Francis Online.
The deterioration of polyethylene and polyvinyl chloride cable materials in the containment building of an operating nuclear reactor has been investigated. Since the maximum dose experienced by the cable materials was only 2.5 Mrad during ∼12 yr of operating life, the extent of material degradation was surprising. Laboratory aging experiments on the two materials established that the cause of the material deterioration in the plant was radiation-induced oxidation. The degradation rate was correlated with local levels of radiation intensity. It was determined that strong synergisms of radiation and elevated temperature, and also dose-rate effects, lead to the surprisingly rapid degradation rates found with these materials. It is concluded that in the design of laboratory methods for aging and qualification testing of organic materials for use in a nuclear plant environment, the possible occurrence of dose-rate effects and synergisms needs to be taken into account.