ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Kristina Skagius, Gunnar Svedberg, Ivars Neretnieks
Nuclear Technology | Volume 59 | Number 2 | November 1982 | Pages 302-313
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT82-A33033
Articles are hosted by Taylor and Francis Online.
A significant retardation of radionuclides leaking from an underground repository can be expected if large parts of the rock body act as a sink for the radionuclides. To calculate the retardation, it is necessary to know the sorption properties and the diffusivities in the rock matrix for the radionuclides in the rock. The diffusivity will determine to what extent the rock matrix may be penetrated. Sorption experiments have been performed to determine the diffusion and sorption properties of cesium and strontium in crushed granite particles with one granite from Finnsjoen outside Forsmark on the east coast of Sweden, and one granite from the Stripa mine in central Sweden. Granite samples have been crushed and screened, and six different particle size fractions from 0.10 to 0.12 mm and 4 to 5 mm of each rock have been used in the experiments. The initial concentrations of inactive cesium and strontium were 10 to 15 ppm. A “synthetic” groundwater was used. The adsorption isotherm was found to be linear for strontium but nonlinear for cesium. One conclusion from this is that a prediction of cesium migration velocity from one single distribution coefficient is inappropriate. The experimental data indicate that the amount of sorption is dependent not only on the mass of granite particles but also to some extent on the size of the particles. A distinction has been made between sorption on external surfaces and inner surfaces. The amount of external surface adsorption was found to vary from 15 to 40% of the total adsorption capacity for the particle size fraction of 0.10 to 0.12 mm to a few percent or less for the largest particles used. Except for the largest particles, the experimentally determined diffusivities were found to lie in the interval expected from literature data on electric conductivities. The diffusivities were found to increase with increasing particle size. This could be explained by a higher diffusion rate in grain boundaries than in a homogeneous material. Nearly all of the smallest particles consist of only one mineral each.