ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
Heinz Bachhuber, Kurt Bunzl, Wolfgang Schimmack, Ingbert Gans
Nuclear Technology | Volume 59 | Number 2 | November 1982 | Pages 291-301
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT82-A33032
Articles are hosted by Taylor and Francis Online.
Rates of migration, retardation factors, and distribution coefficients of 137Cs and 90Sr were determined in the various horizons of three typical soils (podsol, ranker, and brown soil) by employing batch procedures, column experiments, and evaluating the measured distribution of these radionuclides in the field as a result of their deposition from worldwide fallout. To obtain the distribution coefficients of the radionuclides for each soil horizon from the column experiments, the radionuclide distribution in the undisturbed soil monoliths (1 m long, 30-cm diam) was determined from the outside by a scanner technique after various times. The columns were irrigated with rainwater using the same quantities as observed at the site of sampling. Tritium labeled rainwater was used to obtain the hydrodynamic properties of the soil columns (pore water velocity, dispersion coefficient, and volumetric moisture content). Assuming that the fallout investigations yielded the most realistic results, the observations suggest that column experiments performed in the laboratory under approximately natural conditions can be used to obtain fairly realistic information about the migration of 137Cs and 90Sr in these soils. The use of distribution coefficients from batch methods for the prediction of radionuclide movement, on the other hand, can be misleading, especially in soil horizons rich in organic matter.