ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Farzad Rahnema, S. Arif Ahmad, William E. Kastenberg, Gerald C. Pomraning
Nuclear Technology | Volume 59 | Number 2 | November 1982 | Pages 246-255
Technical Paper | Nuclear Safety | doi.org/10.13182/NT82-A33028
Articles are hosted by Taylor and Francis Online.
The margin to criticality of selected distorted core configurations derived from the hypothetical loss of shutdown cooling accident in a 300-MW(electric) gas-cooled fast reactor has been investigated using two-dimensional transport theory. Configurations representing crumbled cores, declad fuel columns in nearly intact geometry, and partial slumping of the fuel on the core floor with subsequent radial spreading have been studied. Three minimum postulated conditions for re-criticality have been identified for the configurations characterized by declad fuel in nearly intact geometry: