ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Shunsuke Uchida, Yoshihiro Ozawa, Eishi Ibe, Yoshinori Meguro
Nuclear Technology | Volume 59 | Number 3 | December 1982 | Pages 498-508
Technical Paper | The Backfill as an Engineered Barrier for Radioactive Waste Management / Material | doi.org/10.13182/NT82-A33008
Articles are hosted by Taylor and Francis Online.
The mechanisms of radioactive corrosion product buildup on the stainless steel surface used for the primary cooling systems of boiling water reactors have been considered and the following conclusions obtained. 1. Ionic species are taken into a spinel structure on the surface and the deposition rate is expressed as a function of exposure time and temperature of contact water. 2. Crud is deposited on the oxide layers at a rate in proportion to the 0.82th power of the Reynolds number. Some ionic species are released from the crud on the oxide layers and are taken into a spinel structure as in item 1. Their contribution to the dose rate buildup is dominant at a dirty plant (which has a high iron content in the feedwater system). 3. The spinel structure grows at the boundary between the oxide layers and the base metal as a result of dry corrosion of stainless steel, which involves ionic species diffusing through the oxide layers. The mechanism is supported by data from destructive measurements of the reactor water cleanup piping at Tsuruga Nuclear Power Plant.