ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
Shunsuke Uchida, Yoshihiro Ozawa, Eishi Ibe, Yoshinori Meguro
Nuclear Technology | Volume 59 | Number 3 | December 1982 | Pages 498-508
Technical Paper | The Backfill as an Engineered Barrier for Radioactive Waste Management / Material | doi.org/10.13182/NT82-A33008
Articles are hosted by Taylor and Francis Online.
The mechanisms of radioactive corrosion product buildup on the stainless steel surface used for the primary cooling systems of boiling water reactors have been considered and the following conclusions obtained. 1. Ionic species are taken into a spinel structure on the surface and the deposition rate is expressed as a function of exposure time and temperature of contact water. 2. Crud is deposited on the oxide layers at a rate in proportion to the 0.82th power of the Reynolds number. Some ionic species are released from the crud on the oxide layers and are taken into a spinel structure as in item 1. Their contribution to the dose rate buildup is dominant at a dirty plant (which has a high iron content in the feedwater system). 3. The spinel structure grows at the boundary between the oxide layers and the base metal as a result of dry corrosion of stainless steel, which involves ionic species diffusing through the oxide layers. The mechanism is supported by data from destructive measurements of the reactor water cleanup piping at Tsuruga Nuclear Power Plant.