ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Alan P. Main, Bryce L. Shriver
Nuclear Technology | Volume 59 | Number 3 | December 1982 | Pages 456-462
Technical PaperTechnical Paper | The Backfill as an Engineered Barrier for Radioactive Waste Management / Material | doi.org/10.13182/NT82-A33003
Articles are hosted by Taylor and Francis Online.
A model for predicting the annealing response of A553-B weld materials has been developed. This model assumes that the irradiation-induced shifts in the nil ductility transition temperature (ΔNDTT) and Charpy upper shelf energy (ΔUSE) are a result of the introduction of three types of defects into the alloy. The recovery of ΔNDTT and ΔUSE depends on the concentration of each defect remaining after the annealing treatment. The three defect types, including their diffusion constants, are assumed to be the same for all A533-B welds. However, the contribution of each defect type to ΔNDTT and ΔUSE depends on the chemical composition of the material and possibly the neutron fluence. Copper, nickel, manganese, and chromium were found to correlate with ΔNDTT, while sulfur and phosphorus appeared to correlate with ΔUSE. Once the relative contribution of each defect type is known, the recovery of ΔNDTT and ΔUSE is predicted based on diffusion calculations. Both the annealing temperature and time are accounted for in the calculations. The final model was compared with experimental data on three materials tested by Westinghouse Electric Corporation and two materials tested by the Naval Research Laboratory. The model accurately predicted the recovery of ΔNDTT for all five materials annealed at 343°C (650°F) to 454°C (850°F) for 24 to 336 h. The predicted recovery of ΔUSE was not as accurate as that of ΔNDTT.