ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
J. Russell Hawthorne
Nuclear Technology | Volume 59 | Number 3 | December 1982 | Pages 440-455
Technical PaperTechnical Paper | The Backfill as an Engineered Barrier for Radioactive Waste Management / Material | doi.org/10.13182/NT82-A33002
Articles are hosted by Taylor and Francis Online.
The effects of three levels of copper content and phosphorus content and two levels of sulfur content on radiation sensitivity and postirradiation heat treatment response were explored for a reactor pressure vessel steel, Type A302-B. Test plates for the investigation were produced from 182-kg (400-lb) laboratory melts. The contributions of individual elements were assessed from Charpy-V (CV) notch ductility changes with 288°C (550°F) irradiation and with a 343°C (650°F), 168-h postirradiation heat treatment. Limited studies of properties recovery by postirradiation 399°C (750°F) heat treatment were also made. Radiation embrittlement sensitivity, as shown by CV transition temperature elevation and CV upper shelf reduction, generally increased with increased copper and phosphorus content and with decreased sulfur content. Certain ranges of phosphorus and copper content were found to be more critical than others. Response to 343°C (650°F) postirradiation heat treatment, as evidenced by transition temperature recovery in degrees Celsius, appeared to be independent of copper, phosphorus, and sulfur content for the ranges investigated. Response to heat treatment also appeared to be independent of the magnitude of the prior transition temperature elevation by irradiation. On the other hand, a dependence of percentage recovery on impurity element content was observed. A dependence of upper shelf recovery on copper content was also found. Six of the eight plate compositions exhibited full upper shelf recovery but only small transition temperature recovery after 343°C (650°F) heat treatment.