ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
K. L. Murty, J. R. Holland
Nuclear Technology | Volume 58 | Number 3 | September 1982 | Pages 530-537
Technical Paper | Material | doi.org/10.13182/NT82-A32986
Articles are hosted by Taylor and Francis Online.
Received June 8, 1981 Accepted for Publication July 31, 1981 Tensile and low cycle fatigue characteristics of Type 304 stainless steel were determined at room temperature and 325°C in both the unirradiated and irradiated (∼8 X 1026 n/m2, >0.1 MeV) conditions. The irradiated tensile specimens exhibited radiation hardening and embrittlement with a significant drop in ductility at 325°C; however, they still behaved as ductile materials with 4 to 5% total elongation. Fatigue tests were conducted at a fixed frequency of 0.1 cps in four-point bending mode with full strain reversal and all tests were carried out under strain control Both the deflection and load were continuously monitored, and the number of cycles to failure was determined at total axial strain ranges varying from ∼1.0 to 2.4%. The number of cycles to failure varied from ∼500 to 40 000. Data at both the room temperature and 325°C indicated that irradiation improved fatigue life at strains lower than ∼1.6%, whereas a slight decrease in life is noted at higher strain ranges. Correlations of the experimental data with predictions of the universal and characteristic slopes equations, based on appropriate tensile properties, are discussed. A modified equation predicting the present data was developed based on the universal slopes concept and tensile properties, such as the ultimate tensile stress, ductility, and work-hardening coefficient.