ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Toshiaki Ohe, Akira Nakaoka, Shinji Takagi
Nuclear Technology | Volume 58 | Number 3 | September 1982 | Pages 521-529
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT82-A32985
Articles are hosted by Taylor and Francis Online.
Received December 28, 1981 Accepted for Publication March 23, 1982 The adsorption of gaseous iodine, I2and CH3I, in typical rocks of Japanese ground formation such as granite, tuff and sandstone is described. Adsorption coefficients (Ka) of crushed rock samples were determined by a column technique under dry or wet vapor conditions. The adsorption isotherm was identified as the Langmuir- or Henry-type equation. The Ka value of I2 varied over two orders of magnitude and was 102 to 103 times greater than that of CH3I. The results suggested that the Ka values of I2 and CH3I were proportional to the specific surface areas of crushed rocks and the order of the coefficients was: granite < tuff < sandstone at the same grain size (300-µm diam). The specific surface area of the permeable ground formation was estimated by the Kozeny-Carman equation, consequently, the smallest value of Ka of the rocks was one-tenth to one-thirtieth less than that of crushed rock.