ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Toshiaki Ohe, Akira Nakaoka, Shinji Takagi
Nuclear Technology | Volume 58 | Number 3 | September 1982 | Pages 521-529
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT82-A32985
Articles are hosted by Taylor and Francis Online.
Received December 28, 1981 Accepted for Publication March 23, 1982 The adsorption of gaseous iodine, I2and CH3I, in typical rocks of Japanese ground formation such as granite, tuff and sandstone is described. Adsorption coefficients (Ka) of crushed rock samples were determined by a column technique under dry or wet vapor conditions. The adsorption isotherm was identified as the Langmuir- or Henry-type equation. The Ka value of I2 varied over two orders of magnitude and was 102 to 103 times greater than that of CH3I. The results suggested that the Ka values of I2 and CH3I were proportional to the specific surface areas of crushed rocks and the order of the coefficients was: granite < tuff < sandstone at the same grain size (300-µm diam). The specific surface area of the permeable ground formation was estimated by the Kozeny-Carman equation, consequently, the smallest value of Ka of the rocks was one-tenth to one-thirtieth less than that of crushed rock.