ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Andr Preumont
Nuclear Technology | Volume 58 | Number 3 | September 1982 | Pages 483-491
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT82-A32982
Articles are hosted by Taylor and Francis Online.
Received July 30, 1980 Accepted for Publication March 10, 1982 The results of a study on the vibrational behavior of pressurized water reactor (PWR) fuel rods are presented. It is shown that a linear finite element model is representative for the low amplitude vibrations. A parametric study on the pellet diameter and the plenum spring force suggests that the vibrational behavior should be expected to change with irradiation. The amount of this change, however, can hardly be estimated from the very limited available experimental data. A typical PWR clad-to-grid connection is analyzed in detail from the point of view of vibratory wear. A procedure is presented to compute a minimum grid spring force consistent with the maximum allowed vibration amplitude.