ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
Meyer Steinberg, James R. Powell, Hiroshi Takahashi
Nuclear Technology | Volume 58 | Number 3 | September 1982 | Pages 437-446
Technical Paper | Fuel Cycle | doi.org/10.13182/NT82-A32979
Articles are hosted by Taylor and Francis Online.
Received October 9, 1981 Accepted for Publication March 18, 1982 The development of a nuclear fission fuel cycle is proposed that eliminates all the radioactive fission product (FP) waste effluent and the need for geological age high-level waste storage and provides a longterm supply of fissile fuel for a light water reactor (LWR) economy. The fuel cycle consists of reprocessing LWR spent fuel (1 to 2 yr old) to remove the stable nonradioactive FPs (NRFPs) (e.g., lanthanides, etc.) and short-lived FPs (SLFP) (e.g., half-lives of <1 to 2 yr) and returning, in dilute form, the long-lived FPs (LLFPs) (e.g., 30-yr half-life cesium and strontium, 10-yr krypton, and 16 X106-yr iodine) and the transuranics (TUs) (e.g., plutonium, americium, curium, and neptunium) to be refabricated into fresh fuel elements. Makeup fertile and fissile fuel (FF) are to be supplied through the use of the spallator (linear accelerator spallation-target fuel producer). The reprocessing of LWR fuel elements is to be performed by means of the chelox process, which consists of chopping and leaching with an organic chelating reagent (β-diketonate) and distillation of the organo-metallic compounds formed for purposes of separating and partitioning the FPs. The stable NRFPs and SLFPs are allowed to decay to background in 10 to 20 yr for final disposal to the environment. The fertile material (FM) (e.g., 238U) and TUs are returned to be reincorporated into LWR fuel elements. The even mass-numbered TUs are efficiently converted to odd mass-numbered FF in the reactor, which then fissions to produce thermal energy and FPs in the LWR. The TUs have high thermal neutron cross sections and are therefore efficiently converted in the thermal LWR. The LLFPs (e.g., cesium, strontium, krypton, and iodine) are recycled in the fuel cycle to decay and become transmuted both in the spallator and the LWR to SLFP and stable NRFP products. Decay is the major mode of transmutation of the LLFPs because of their small thermal neutron cross sections. Some neutron transmutation does occur and shortens the storage times for the LLFPs. In this manner, long-term geological age storage of FP waste is avoided and the need for a new fast breeder reactor economy is no longer a necessity by the utility power industry. The APEX fuel cycle can be beneficially applied to the Th/233U cycle as well as the described U/239Pu cycle. A number of development efforts will be required to bring this system into production; however, no new basic scientific or technical proof-of-principle is needed.